

MESTRADO EM ECONOMETRIA APLICADA E PREVISÃO MICROECONOMETRIA E AMOSTRAGEM EXAME ÉPOCA NORMAL – 09/06/2015

Duração 2h30

1. Seja a equação,

$$y_{it} = \beta_0 + \mathbf{x}_{it} \mathbf{\beta} + \mathbf{z}_i \mathbf{\gamma} + c_i + \lambda_t + u_{it}, \qquad i = 1, 2, ..., n; \ t = 1, 2, ..., T$$
 (1)

onde:

- \triangleright \mathbf{x}_{it} é vetor $1 \times k$ de variáveis explicativas que variam no tempo;
- \triangleright \mathbf{z}_i é vetor $1 \times g$ de variáveis explicativas que não variam no tempo;
- \triangleright β e γ são vetores $k \times 1$ e $g \times 1$, respetivamente, de parâmetros desconhecidos;
- \triangleright β_0 é o termo independente;
- \triangleright λ_t é um efeito fixo específico do tempo;
- $ightharpoonup c_i$ e u_{it} são variáveis aleatórias independentes e não observáveis.
- a) Escreva a equação (1) depois de aplicar a transformação de primeiras diferenças às variáveis e (15) indique os parâmetros que não serão identificados com esta transformação. Apresente as vantagens e desvantagens da estimação do modelo com a aplicação desta transformação.
- b) Comente a afirmação: "Se não existir autocorrelação no erro u_{ii} da equação (1), o estimador OLS da matriz de variâncias covariâncias do estimador dos coeficientes do modelo obtido na alínea anterior não é válido". Apresente as deduções que considerar necessárias.
- c) Que hipótese(s) tem de assumir sobre o erro u_{it} para que a estimação OLS do modelo com a (15) transformação de primeira diferenças seja consistente? Compare com aquela(s) que necessita de assumir por forma a garantir a validade do estimador de Efeitos Fixos.

 Por forma a analisar de que forma evoluiu o produto interno bruto de um dado estado dos Estados Unidos da América, entre 1980 e 1986, explicitou-se o seguinte modelo,

$$\log(GSP_{it}) = \beta_0 + \theta \log(pub_cap_{it}) + \lambda \log(priv_cap_{it}) + \phi \log(emp_{it}) + c_i + \lambda_t + u_{it}$$
onde:
(2)

- $ightharpoonup GSP_{it}$ produto interno bruto, em milhões de dólares, do estado i, no ano t;
- $ightharpoonup pub_cap_{it}$ capital público investido, em milhões de dólares, do estado i, no ano t;
- $ightharpoonup priv_cap_{it}$ capital privado investido, em milhões de dólares, do estado i, no ano t;
- $ightharpoonup emp_{it}$ número de trabalhadores, em milhares, do estado i, no ano t
- a) No anexo 1 encontram-se os comandos e os *outputs* resumidos das estimações de Efeitos Fixos (10)
 e de Efeitos Aleatórios da equação (2). Comente e compare as estimativas obtidas.
- b) No anexo 2 apresenta-se o resultado de um teste realizado após as estimações anteriores. Qual o objetivo deste teste? Quais as principais conclusões a retirar? Comente a possibilidade de se verificarem as hipóteses que garantem a validade deste teste.
- 3. Um decisor político considerou o modelo estático insuficiente para analisar a relação de curto prazo entre as variáveis. Como tal, foi introduzida dinâmica no modelo inicialmente proposto:

$$\log(GSP_{it}) = \beta_0 + \alpha \log(GSP_{i,t-1}) + \theta \log(pub_cap_{it}) + \lambda \log(priv_cap_{it}) + \phi \log(emp_{it}) + c_i + \lambda_t + u_{it}$$
(3)

- a) No anexo 3 encontram-se os comandos e os *outputs* de duas estimações da equação (3). (10) Identifique os respetivos estimadores e métodos de estimação.
- b) Analise a validade dos instrumentos utilizados em ambas as estimações. (15)
- c) Distinga a utilidade da opção "robust" em cada uma destas estimações. (10)
- d) Qual a razão para que a estimativa de α seja tão diferente nas duas estimações apresentadas? (20) Justifique, incluindo na sua resposta a formalização das condições de momentos associadas a cada estimação.

- 4. Considere a variável *hospsat**, que representa a satisfação ao nível dos cuidados de saúde dos utentes dos hospitais da Alemanha. No entanto, apenas a variável *hospsat* é observada, traduzindo as seguintes situações refletidas pelos utentes: nada satisfeito (0), pouco satisfeito (1), medianamente satisfeito (2), muito satisfeito (3).
 - a) Qual natureza da variável *hospsat*? Justifique. (05)
 - b) Com base na sua resposta anterior, indique e deduza o modelo que deverá ser ajustado para (20) estimar a probabilidade associada aos diferentes níveis de satisfação de um utente hospitalar, como função de um conjunto de variáveis explicativas, **x**. Refira ainda as hipóteses que assumiu sobre a variável *hospsat** e as variáveis explicativas, **x**.
 - c) No anexo 4 encontra-se um quadro resumo, cujas variáveis têm o seguinte significado:
 - age idade do utente, em anos;
 - female 1 se utente do sexo feminino;
 - *educ* nível de escolaridade do utente, em anos;
 - *hhninc* rendimento nominal mensal líquido, em milhares de euros;
 - *hhkids* 1 se agregado familiar do utente tem crianças com menos de 16 anos;
 - hospvis número de idas ao hospital, no ano anterior;
 - public 1 se utente beneficia de seguro de saúde de natureza pública
 - (i) Interprete e comente os valores da coluna dy/dx. (20)
 - (ii) Existem diferenças que no cálculo do valor associado a *female* e no cálculo do valor (25) associado a *age*? Justifique, apresentando as respetivas formas de cálculo.

ANEXO 1

xtreg l_gsp l_pub_cap l_priv_cap l_emp y_1984-y_1986, fe
estimates store FE

xtreg l_gsp l_pub_cap l_priv_cap l_emp y_1984-y_1986, re
estimates store RE

Variable	1	FE	RE
	-+		
l_pub_cap		35893998***	24199737***
l_priv_cap		.16109244***	.26347703***
l_emp		1.1615175***	.99652641***
y_1984		.02859597***	.02909731***
у_1985		.0309316***	.03188049***
у_1986		.03987842***	.03921851***
_cons		4.1642497***	3.0954474***
1.	~ ~	and. * m/ 1. **	. ~ 05. *** ~ 01

legend: * p<.1; ** p<.05; *** p<.01

OBS.:

- $1_x = \log(x)$
- $y_d 1$ para a observação it quando t = d com d = 1984, 1985, 1986

ANEXO 2

hausman FE RE

ANEXO 3

xtabond2 l_gsp L.l_gsp l_pub_cap l_priv_cap l_emp y_1984-y_1986, noleveleq robust iv(y_1984-y_1986) gmm(L.l_gsp l_pub_cap l_priv_cap l_emp, lag(3 4))

<pre>Group variable: state_id</pre>			Number o	f obs	=	240
Time variable : year			Number o	f groups	=	48
Number of instruments = 29			Obs per	group: min	=	5
Wald chi2(7) = 1744.70				avg	=	5.00
Prob > chi2 = 0.000					=	
	Robust					
l_gsp Coef.						
1 gsp						
L1. 1248606	.107883	-1.16	0.247	3363073	.08	365861
l pub cap 5081434	.1636854	-3.10	0.002	8289609	18	373259
 l priv cap .0780798				078174		
l emp 1.642203				1.254931	2.0	029475
y 1984 .0012052				0140553	.01	164656
y 1985 .0027548						
y_1986 .0121334						
Arellano-Bond test for AR(1						
Arellano-Bond test for AR(2						
Sargan test of overid. rest (Not robust, but not weak	crictions: ch	ni2(22)	= 76.66			
Hansen test of overid. rest (Robust, but weakened by	crictions: ch	ni2(22)		Prob > c	ni2 =	0.055

ANEXO 3 (cont.)

xtabond2 l_gsp L.l_gsp l_pub_cap l_priv_cap l_emp y_1984-y_1986, twostep robust iv(y_1984-y_1986) gmm(L.l_gsp l_pub_cap l_priv_cap l_emp, lag(3 4))

<pre>Group variable: state_id</pre>			Number c	f obs	=		288
Time variable : year			Number c	f group	s =		48
Number of instruments = 45			Obs per	group:	min =		6
Wald chi2(7) = 40518.78					avg =		6.00
Prob > chi2 = 0.000					max =		6
I	Corrected						
l_gsp Coef.	Std. Err.	Z	P> z	[95%	Conf.	Inter	val]
l_gsp							
L1. .9148618	.097326	7.35	0.000	.5241	.064	.905	6172
l_pub_cap 0738527	.0386328	-1.91	0.056	1495	5717	.001	8662
l_priv_cap .0733315	.0412681	1.78	0.076	0075	5525	.154	2155
l_emp .2994378	.0804873	3.72	0.000	.1416	855	.457	1901
y_1984 .0463336	.0044384	10.44	0.000	.0376	345	.055	0328
y 1985 .0246774	.0037357	6.61	0.000	.0173	3556	.031	9992
y 1986 .0225487	.0051515	4.38	0.000	.0124	1519	.032	6455
cons .8489353	.232505	3.65	0.000	.3932	2339	1.30	4637
Arellano-Bond test for AR(1) in first	differenc	es: z =	-4.21	Pr > 2	z = 0	.000
Arellano-Bond test for AR(2) in first	differenc	es: z =	0.64	Pr > 2	z = 0	.522
Sargan test of overid. rest	rictions: c	hi2(37)	= 134.14	Prob	> chi2	2 = 0	.000
(Not robust, but not weak							
Hansen test of overid. rest	_	=		Prob	> chi2	2 = 0	.137
(Robust, but weakened by							

ANEXO 4

margins, dydx(*) predict(outcome(3))

1.hhkids | .0438717

1.public | -.0729102 .0190459

<pre>Expression : Pr(hospsat==3), predict(outcome(3))</pre>						
	:	Delta-method				
I	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
+						
age	0077825	.0005382	-14.46	0.000	0088373	0067276
1.female	0331967	.0101843	-3.26	0.001	0531577	0132358
educ	.0177501	.0026709	6.65	0.000	.0125153	.0229849
hhninc	.1259795	.0343573	3.67	0.000	.0586405	.1933186

.011351

hospvis | -.0327917 .004467 -7.34 0.000

3.87 0.000

.0216241

-3.83 0.000 -.1102395 -.0355808

-.041547 -.0240365

.0661192